1、微波遥感有两种成像方式,一种是主动成像方式,即利用传感器向地面发射微波,然后接受其散射波的成像方式,如合成孔径雷达、微波散射计、雷达高度计等都是些种成像方式; 另一种是被动成像方式,即观测地表目标的辐射方式,如利用微波辐射计成像。这里主要介绍机载侧视雷达成像特点。
2、微波遥感以其能够全天候工作、穿透能力强等特点,成为重要的遥感技术手段。以下将对几种常见地物的微波特征进行介绍。 水体的微波特征 雷达判别水体特别方便,其原因是水面产生镜面反射,几乎没有方向反射,天线接收不到回波,雷达影像上呈黑色,并且水陆边界黑白分明。
3、微波遥感:不受大气影响,可从多视角获取空间关系。
4、微波遥感的主要优势是能够实现全天时、全天候探测,具有穿透云雾的能力。其图像的几何特性(也许就是空间特性了吧)在于:垂直于飞行方向的比例尺由小变大;造成山体前倾,朝向传感器的山坡影响被压缩,而背向传感器的山坡被拉长,与中心投影相反,还会出现不同地物点重影现象。
5、用人工发射的微波段,如侧视雷达成像)。可见光航片:几何变形小,相片倾斜度小,空间分辨率高,可立体观察 如果是彩片,可能存在色彩不饱和(蓝波光的大气散射)彩红外航片:散射影响减小,色调饱和度高,图像清晰 微波遥感:不受大气影响,可从多视角获取空间关系。
遥感常用的波段是紫外、可见光、红外和微波。故选ABCD。
遥感使用的波段都包括紫外线波段,可见光波段,红外波段,微波。遥感使用的波段 紫外线波段 主要用于测定碳酸盐分布,对水面漂浮的油膜比对周围的水反射强烈,因此常用于对油污的检测。可见光波段 最常用的电磁波段,人眼对其有敏锐的感觉,成像方式多样,探测能力高。
可见光波段:可见光波段范围通常从400纳米到700纳米,对应于人眼可见的光谱范围。可见光波段的遥感数据可以提供地物的颜色、形状和纹理等视觉特征。 近红外波段:近红外波段范围通常从700纳米到1100纳米。近红外波段的遥感数据可以提供关于地物植被健康状态、植被类型和土地覆盖的信息。
遥感常用的各光谱段的主要特性如下:紫外线 波长范围为0.01—0.4μm。太阳辐射含有紫外线,通过大气层时,波长小于0.3μm的紫外线几乎都被吸收,只有0.3—0.4μm波长的紫外线部分能穿过大气层到达地面,且能量很少,并能使溴化银底片感光。紫外波段在遥感中应用比其它波段晚。
①紫外遥感器:使用近紫外波段,波长选在0.3~0.4微米范围内。常用的紫外遥感器有紫外摄影机和紫外扫描仪两种。近紫外波段的多光谱照相机也属于这一类。②可见光遥感器:接收地物反射的可见光,波长选在0.38~0.76微米范围内。
可见光/反射红外遥感,热红外遥感、微波遥感。可见光/反射红外遥感,主要指利用可见光(0.4-0.7微米)和近红外(0.7-5微米)波段的遥感技术统称,前者是人眼可见的波段,后者即是反射红外波段,人眼虽不能直接看见,但其信息能被特殊遥感器所接受。
遥感手段不同 可见光遥感:是利用照相机拍被探测物体的照片。微波遥感:是利用微波摄下物体的景象。穿透云层能力不同 可见光遥感:对云层,特别对雨云是“望而生畏”的 微波遥感:在云层中畅行无阻,因此,可以在高空中(如卫星上)拍摄地面景物。
作为入射电磁波源,微波和可见光在测量中的区别如下 可见光:所观测的电磁波的辐射源是太阳。该遥感数据对地标目标物的反射率有很大的依赖性,根据反射率的差异可以获得有关目标物的信息。微波:所观测的电磁波的辐射源有目标物(被动)和雷达(主动)两种。
可见光遥感属于光学遥感,可见光遥感使用光学技术,微波遥感则是采用无线电技术。探测波段:可见光遥感探测波段范围0.38-0.76um;微波遥感探测波段范围通常大于1mm,但其中的激光雷达波段范围在可见光与红外波段。
Copyright © 2022-2024 Corporation. All rights reserved. KAIYUN体育 版权所有